Physiological control of pituitary hormone secretory-burst mass, frequency, and waveform: a statistical formulation and analysis.
نویسندگان
چکیده
The present study investigates the time-varying control of pituitary hormone secretion over the day and night (D/N). To this end, we implemented an analytical platform designed to reconstruct simultaneously 1) basal (nonpulsatile) secretion, 2) single or dual secretory-burst waveforms, 3) random effects on burst amplitude, 4) stochastic pulse-renewal properties, 5) biexponential elimination kinetics, and 6) experimental uncertainty. The statistical solution is conditioned on a priori pulse-onset times, which are estimated in the first stage. Primary data composed of thyrotropin (TSH) concentrations were monitored over 24 h in 27 healthy adults. According to statistical criteria, 21/27 profiles favored a dual compared with single secretory-burst waveform. An objectively defined waveform change point (D/N boundary) emerged at 2046 (+/-23 min), after which 1) the mass of TSH released per burst increases by 2.1-fold (P < 0.001), 2) TSH secretory-burst frequency rises by 1.2-fold (P < 0.001), 3) the latency to maximal TSH secretion within a burst decreases by 67% (P < 0.001), 4) variability in secretory-burst shape diminishes by 50% (P < 0.001), and 5) basal TSH secretion declines by 17% (P < 0.002). In contrast, the regularity of successive burst times and the slow-phase half-life are stable. In conclusion, nycthemeral mechanisms govern TSH secretory-burst mass, frequency, waveform, and variability but not evidently TSH elimination kinetics or the pulse-timing process. Further studies will be required to assess the generality of the foregoing distinctive control mechanisms in other hypothalamo-pituitary axes.
منابع مشابه
Cortisol feedback state governs adrenocorticotropin secretory-burst shape, frequency, and mass in a dual-waveform construct: time of day-dependent regulation.
Quantification of in vivo pituitary hormone secretion requires simultaneous appraisal of implicit 1) secretory-burst waveform, mass, and stochastic pulse timing; 2) basal secretion; 3) biexponential elimination kinetics; and 4) random experimental error (Keenan DM, Licinio J, and Veldhuis JD. Proc Natl Acad Sci USA 98: 4028-4033, 2001). The present study extends this analytic formalism to allow...
متن کاملEvaluation of LH secretory dynamics during the rat proestrous LH surge.
The preovulatory luteinizing hormone (LH) surge results from the integration of complex interactions among gonadal steroids and hypothalamic and pituitary hormones. To evaluate changes in LH secretory dynamics that occur during the rat LH surge, we have 1) obtained frequently sampled serum LH concentration time series, 2) used both waveform-dependent and waveform-independent convolution analyse...
متن کاملControl of LH secretory-burst frequency and interpulse-interval regularity in women.
Hypothalamic neurons generate discrete bursts of gonadotropin-releasing hormone (GnRH) and thereby pulses of luteinizing hormone (LH) at randomly timed intervals centered on a probabilistic mean frequency. We tested the hypothesis that physiological mechanisms govern not only the number but also the stochastic dispersion of the GnRH/LH pulse-renewal process in humans; for example, in young wome...
متن کاملEffects of growth hormone administration on luteinizing hormone secretion in healthy older men and women
The known interactions between the somatotropic and hypothalamic-pituitary-gonadal (HPG) axes have not been well delineated in older individuals. Aging-associated decline in insulin like growth factor-1 (IGF-1) levels has been proposed to play a role in reproductive senescence in animals. However, the effects of GH on LH secretion are unknown in older individuals. Our objective was to determine...
متن کاملOctreotide represses secretory-burst mass and nonpulsatile secretion but does not restore event frequency or orderly GH secretion in acromegaly.
Octreotide is a potent somatostatin analog that inhibits growth hormone (GH) release and restricts somatotrope cell growth. The long-acting octreotide formulation Sandostatin LAR is effective clinically in approximately 60% of patients with acromegaly. Tumoral GH secretion in this disorder is characterized by increases in pulse amplitude and frequency, nonpulsatile (basal) release, and irregula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 285 3 شماره
صفحات -
تاریخ انتشار 2003